

Development of a New Generation of High-Temperature Thermoelectric Unicouples for Space Applications

Direct Thermal-to-Electrical Energy Conversion San Diego, CA August 2006

presented by

T. Caillat

co-authors

P. Gogna, J. Sakamoto, A. Jewell, J. Cheng, R. Blair, J. -P. Fleurial, and R. Ewell

Jet Propulsion Laboratory/California Institute of Technology

What is a Radioisotope Thermoelectric Generator?

- Long life, high reliability DC electrical power source
- Converts heat from a radioisotope heat source to electricity
- Contains a nuclear radioisotope heat source, thermoelectric converter and a radiator
- Thermoelectric converter contains many couples connected in series and parallel networks
- Unicouples consist of two semiconductor thermoelectric legs (p and n) placed between hot and cold temperatures
- Efficiency of the couple depends on the thermoelectric properties of the unicouple (ZT) and temperature difference between hot and cold ends

$$\eta = \frac{T_H - T_C}{T_H} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + \frac{T_C}{T_H}} \qquad z = \frac{\alpha^2}{\rho \lambda}$$

Flight Demonstrated Radioisotope Thermoelectric Generators (3 Most Recently Flown Designs)

SNAP-19(PbTe RTG) (1960-70's)

40.3 Watts (BOM) 6.2 % sytem efficiency 3 We/kg

22.86 cm (9.0 in) long 50.8 cm (20 in) dia ~13 kg (28.6 lb) PbTe Thermoelectrics

Nimbus B-1/III, Pioneer 10/11, Viking 1/2

SiGe MHW RTG (1970's)

158 We (BOM) 6.6 % system efficiency 4.2 We/kg

58.4 cm (23 in) long 39.7 cm (15.64 in) dia 38 kg (83.7lb) SiGe Thermoelectrics

LES 8/9, Voyager 1/2

SiGe GPHS RTG (1980-2006)

285 We (BOM) 6.8% system efficiency 5.1 We/kg

114 cm (44.9 in) long 42.7cm (16.8in) dia 56 kg (123 lb) SiGe Thermoelectrics

Galileo, Ulysses, Cassini & New Horizons

Pre-Decisional – For Discussion Purposes Only

MMRTG Characteristics

- Electrical Power Output: ~ 123 W (BOL)
- Specific power: ~ 2.8 W_a/kg
- System Efficiency ~ 6.2%
- Voltage 28 VDC
- In-space & surface operational capability
- Qualified for 0.2 g²/Hz random vibrations
- Mission life design ~14 years
- Mass: ~ 44.1 kg
- **Dimensions (half that of GPHS-RTG):**
 - ♦ Length ~64 cm
 - Diameter ~64 cm
- 8 GPHS modules
- Thermal Power Input ~ 2000 W (BOL)
- 768 PbSnTe/TAGS+ PbTe couples
 - $T_{hot} \sim 811 K;$
 - ◆ T_{cold} ~ 483 K

PbSnTe/TAGS+ PbTe couples

Mars Science Laboratory (MSL)

MMRTG Under Development For MSL And Other Future Deep Space And Surface Missions Pre-Decisional – For Discussion Purposes Only

NASA Advanced RTG Needs

	Near Term (~2015)	Long Term (>2020)
Specific Power (W/kg)	6 - 8	> 10
Readiness	2015 - 2016	> 2020
Lifetime	> 14 years < 22% degradation	> 14 years < 22% degradation
Heat Source	Step 2 GPHS (8 to 12 units)	Step 2 GPHS (1 to 12 units)
System Efficiency (%)	10	13 - 15

Advanced Thermoelectric Technology Programs at JPL

- Near Term Advanced RTG Development Project
 - Advanced Thermoelectric Converter (ATEC)
 Development
- Far Term Advanced RTG Development Tasks
 - Si-Ge Nanocomposites
 - Advanced Thermoelectrics R&T

Advanced Thermoelectric Converter (ATEC)

Major Objectives:

- Develop and demonstrate advanced thermoelectric converter capable of supporting a deep space RTG with 6-8 We/kg and 14 year lifetime.
- Develop and demonstrate couple with 11-12% conversion efficiency
- Demonstrate at least 1 year of lifetime operation on both couples and 4-couple modules
- Prediction of maximum of 22% power degradation (including isotope decay) over 14 years

Benefit: 110-180% RTG Specific Power Increase and 28 - 60% system conversion efficiency increase over MMRTG

PM: Rao Surampudi

PI: Thierry Caillat

Participating Organizations: JPL, GRC, USC, MSFC, Systems contractor

Milestones:

FY'06 Select primary & back-up high temperature TE materials

FY'07 Develop updated TE materials database

Validate couple power output within 10% of predict

FY'08 Validate 4-couple module power output within 10% of predict Complete couple fabrication and assembly specification

FY'09 Validate 1 year of couple life with < 0.33% degradation

Projected Performance

- High ZT(>1.0) thermoelectric materials
 - ♦ Higher efficiency
- Segmented couples
 - Each segment optimized for maximum performance
- Large Delta T: (1275 to 525 K Operation)
 - Higher efficiency
- Sublimation Control
 - Aerogel
 - Metal/metal oxide coatings

Synthesis Approach for Scalability

Spex High Energy Ball Mill

- Vial load capacity 10 15g
- Double vials system
- Back-and-forth shaking motion
- Balls impact with powder and vial
- ~ 1200rpm, vial swing ~ 5cm
- Making the force of the balls impact very high

Planetary Low Energy Ball Mill

- Vial load capacity few hundred grams
- Two or four vials system
- Planet-like movement of its vials
- Centrifugal force produced by the vials rotating around their own axes and produced by the rotating support disk both act on the vial content
- Low impact synthesis process

Planetary Mill

High Temperature Thermoelectric Materials Results: p- type Zintl

- Thermoelectric Properties
 - ◆ ZT > 1 at 1275K
- Synthesis process
 - Mechanical alloying
- Reproducibility
 - ◆ TE properties reproduced on >10 batches
- Scalability
 - 15g batches demonstrated
 - ♦ 50g batches by end of 2006
- Mechanical Properties
 - Initiated Young and shear modulus, Poisson's ratio, fracture toughness, flexural strength
- Sublimation
 - BOL (~ 5 x10⁻³ g/cm² /hr at 1275K)
- Segmentation
 - Co-hot-pressed several legs (promising)
- Some remaining challenges
 - Achieve sublimation goal of ~ 10⁻⁷ g/cm⁻² /hr through use of sublimation suppression coatings
 - Demonstrate TE property stability over time
 - Segmentation to low-T SKD material

ZT values for Yb₁₄MnSb₁₁ material

High Temperature Thermoelectric Materials: p - type NanoSiGe (MIT/JPL)

- Thermoelectric Properties
 - ZT approaching 1 at 1275K
- Synthesis process
 - Mechanical alloying
- Reproducibility
 - In progress
- High temperature Stability
 - Demonstrated stability of TE properties for 750 hrs at 1275K under MIT / JPL NRA task
- Scalability
 - 15g batches demonstrated
 - 50g batches by end of 2006
- Mechanical Properties
 - Will be initiated by end of 2006
- Sublimation
 - Plan to measure BOL sublimation and compare with RTG materials
 - Si₃N₄ coatings (GPHS-RTG SiGe)
- Segmentation
 - GPHS-RTG heritage for metallization
 - Need to develop segmentation to low-T SKD if needed
- Remaining challenge:
 - Demonstrate batch to batch reproducibility and scalability
 - Further demonstrate TE property stability over time

Potential Backup material for Zintl

High Temperature Thermoelectric Materials: n - type SiGe

- Thermoelectric Properties
 - ◆ ZT ~ 1.1 at 1275K
- Synthesis process
 - Mechanical alloying
- Scalability
 - ♦ 15g batches demonstrated
 - 50g batches by end of 2006
- Reproducibility
 - ZT ± 10% of 4 consecutive batches
- Sublimation
 - **♦** Si₃N₄ coatings used for GPHS-RTG SiGe
 - Plan to measure BOL sublimation and compare with GPHS-RTG SiGe
- Segmentation
 - ♦ RTG heritage for metallization
 - Need to develop segmentation to low-T skutterudite
- Mechanical Properties
 - Measurements initiated
 - Expected to be similar to GPHS-RTG SiGe
- Issues / concerns
 - ◆ Achieve higher ZT > 1 at 1275K

Improved mechanically alloyed SiGe

High Temperature Thermoelectric Materials n - type LaTe_{1.4}

- Thermoelectric Properties
 - Not measured yet for optimized samples
 - ♦ Goal is ZT ~ 1.2 at 1275K
- Reproducibility
 - Not yet
- Scalability
 - ♦ 15g batches
- Mechanical Properties
 - Not yet
- Sublimation
 - Not yet
- Segmentation
 - Not yet
- Remaining challenges
 - Develop reproducible mechanical alloying synthesis process
 - Optimize TE properties by controlling La to Te ratio

N-LaTe_{1.4}

- Potential backup for mechanically alloyed n- SiGe
- Pay back is potentially high since this material offers high ZT > 1 at high temperatures

ZT summary

Mechanical Properties 40mm x 7mm puck

Sublimation Suppression Control Disks 12mm x 1.5mm disks

CTE and Compression 6.4mm x 25mm

Sublimation Rates Life Tests at 875 K for n- and ptype low-T SKD Aerogel Encapsulated Coupons

Demonstrated that the desired sublimation rate (<5 x 10⁻⁷ g/cm²hr) for 14 years of operation can be achieved up to 875K for aerogel-encapsulated low-T skutterudites after up to 4000 hours of testing

Low-T skutterudite -unicouple performance testing

- Initiated performance life testing of spring-loaded low-T skutterudites unicouples
 - In-gradient testing with T_{Hot} ~ 875 K ± 10K and T_{Cold} = 300 K ± 10K
 - Vacuum environment (10⁻⁶ Torr)
 - Power output vs. load current at constant hot-shoe temperature

Low-T skutterudite unicouple performance life testing

Summary

Summary

- RTG's have enabled surface and deep space missions since 1961
 - 26 flight missions without any RTG failures
 - Mission durations in excess of 25 years
- Future NASA missions require RTG's with high specific power and high efficiency, while retaining long life (> 14 years) and high reliability
 - 6-8 W/kg, 10-15% efficiency
- ◆ JPL in partnership with NASA-GRC, NASA-MSFC, DOE, Universities and Industry is developing advanced thermoelectric materials and converters to meet future NASA needs

Acknowledgements

 NASA Science Missions Directorate/ Radioisotope Nuclear Systems and Technologies